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Switching of discrete optical solitons in engineered waveguide arrays
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We demonstrate a simple concept for controlling nonlinear switching of discrete solitons in arrays of weakly
coupled optical waveguides, for both cubic and quadratic nonlinear response. Based on the effective discrete
nonlinear equations describing light propagation in the waveguide arrays in the tight-binding approximation,
we demonstrate the key ideas of the array engineering by means of a steplike variation of the waveguide
coupling. We demonstrate the digitized switching of a narrow input beam for up to 11 neighboring waveguides,
in the case of the cubic nonlinearity, and up to 10 waveguides, in the case of the quadratic nonlinearity. We
discuss our predictions in terms of the physics of the engineered Peierls-Ngdisymotential experienced by
strongly localized nonlinear modes in a lattice, and calculate the PN potential for the quadratic nonlinear array
for the first time.
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[. INTRODUCTION Indeed, one of the major problems for achieving control-
slable multiport all-optical switching of discrete solitons in
Jvaveguide arrays is the existence of an effective periodic
Peierls-NabarrgPN) potential which appears due to the lat-

tially localized modes of discrete nonlinear lattices existingliC® discreteness. As a consequence of this potential, a nar-

without defects are known as discrete solitons or intrinsi(:rOWI Ia.rge;]amlplit_ude d(ijsc_rete sglitgn does not pzjopbagart]e
localized modes; they appear in many diverse areas of phy&€€ly in the lattice and, instead, becomes trapped by the

ics such as biophysics, nonlinear optics, and solid state phy&/Tay- Several ideas to exploit the discreteness properties of

ics [2,3]. More recently, such modes have been predicted ithe array for digitized all-optical switching have been sug-

the studies of the Bose-Einstein condensates in optical laf€Sted[16,17. However, the main result of those earlier
tices[4] and photonic-crystal waveguides and circyfig studies is the observation that the discrete solitons can be

One of the most important applications of discrete soli-well controlled only in the limit of broad beams, whereas the

tons is found in nonlinear optics where discrete optical soli-S°liton dynamics in highly discrete arrays has been shown to
more complicated and even chagti@].

tons were first suggested theoretically by Christodoulide® . . : .
In this paper, we explore in detail an effective way to

and Joseph[6] for an array of weakly coupled optical - L . . ;
waveguides. Because the use of discrete solitons promises §ANtrol nonlinear switching of discrete solitons in arrays of
efficient way to realize and control multiport nonlinear Weakly coupled optical waveguides earlier suggested in our

switching in systems of many coupled waveguides, this field?rief letter [18]. First, using the discrete model valid in the

has been explored extensively during the last 10 years in gght-binding approximation, we estimate. the PN pme”ti"%'
number of theoretical papersee, e.g., Refg7—-9], as an experienced by a strongly localized nonlinear mode that is

example. More importantly, discrete solitons have also beenkicked initially in-a cubic nonlinear waveguide array. The
; ; éesult suggests a possible control mechanism for the switch-

structureg(see, e.g.[10,1]] for original papers reporting on mg'of. strongly Iocalizeq excitatiqns by means of a steplike
the experimental observations and a[4@-14 for recent Variation of the waveguide coupling. For particular types of
review papers the engineered arrays, we are able to demonstrate the digi-
The majority of theoretical studies conducted so far istized switching of a narrow input beam for up to 11
devoted to the analysis of different types of stationary local\vaveguides, for the case of cubic nonlinearity. We also ex-
ized modes in discrete nonlinear models and their stabilitytend the concept of controllable digitized switching of dis-
Consequently, experimental papers have reported on the obrete optical solitons to the case of quadratic nonlinear wave-
servation of self-trapped states in the periodic systems witlguide arrays, where the experimental observation of discrete
broken translational symmetry and some of their propertiespptical solitons has been reported very receflly]. Here,
in both focusing and defocusing regimd®-14. However, we obtain, for the first time to our knowledge, the PN poten-
only very few studies and experimental demonstrations adtial for the discrete soliton and demonstrate numerically the
dressed more specific properties of localized modes introdigitized switching for up to 10 waveguides.
duced by discreteness such as the soliton steering in and The paper is organized as follows. In Sec. Il we study the
discreteness-induced trapping by the lattisee, e.g., Ref. arrays of cubic nonlinear waveguides. First, we consider the
[15]). As a result, very little effort has been made so far tosystem dynamics described by the discrete nonlinear
link these findings with realistic applications of discrete soli- Schrédinger equation, and show how to modulate the wave-
tons for multiport all-optical switching. guide coupling in order to suppress the chaotic dynamics and

Discrete nonlinear systems are known to support sel
localized modes that exist due to an interplay between a co
pling between the lattice sites and nonlineafity. Such spa-
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Steering and trapping of discrete optical solitons have
been analyzed in the framework of the mo@glin a number
of theoretical studies. Being kicked by an external force, the
discrete soliton propagates through the lattice for some dis-
tance, but then it gets trapped by the lattice due to the dis-
creteness effects. For a stronger kick, the output soliton po-
(@)

sition fluctuates between twoor more neighboring
« waveguides making the switching uncontrollaple].
In order to show this feature, first we consider homoge-
/ neous arrays and select an input profile in the form of a
narrow sechlike beam localized on a few waveguides follow-
Focussed Laser Beam ing the earlier study by Krélikowsket al. [20]:
FIG. 1. Example of a homogeneous waveguide array and the u,(0) = A sechiA(n - nc)/\e“'Z]e"ik(“_“C), 2)

generation of a discrete soliton by exciting a single waveguide.
for n-n.=0, £1, andu,(0)=0, otherwise. For the particular

achieve fully controllable digitized switching. Next, in Sec. results presented below, we consider an array of 101
Il we extend our analysis to the arrays of weakly coupledwaveguides and place the beam at the middle positign,
quadratic nonlinear waveguides, where discrete quadratic50- The maximum normalized propagation distance used in
solitons are composed of the coupled beams of the funda&ur simulations ig,,=45. Parametek in the ansatz2) has

mental and second-harmonic fields. Finally, Sec. IV conthe meaning of the transverse steering velocity of the beam,
cludes the paper. in analogy with the continuous approximation. It describes

the value of an effective kick of the beam in the transversal
direction at the input, in order to achieve the beam motion
Il. CUBIC NONLINEAR WAVEGUIDES and shift into one of the neighboririgr other desiregwave-
Quide outputs.
In our simulations, we control the numerical accuracy by
Ewonitoring the two conserved quantities of modg), the
soliton power

The most common theoretical approach to studying th
discrete optical solitons in arrays of weakly coupled optical
waveguides is based on the decomposition of the electri
field of the periodic photonic structure into a sum of weakly
coupled fundamental modes excited in each waveguide of p=3 u(2)? 3)
the array; in solid-state physics this approach is known as the B ~ '
tight-binding approximation. According to this approach, the
wave dynamics is described by an effective discrete nonlinand the system Hamiltonian,
ear SchrodingefDNLS) equation that possesses spatially lo-
calized stationary solutions in the form of discrete localized H=-> {V(unu;+1+ u;un,,l) + (¢2)|ug[ 4. (4)
modes. Many properties of the discrete optical solitons can n
be analyzed in the framework of this approach and the the input condition(2) does not correspond to an exact
DNLS equation[6,9]. stationary solution of the discrete equatitt) even fork

Homogeneous arraysA standard model of a weakly —q ang, as the input kickk+0) forces the localized wave
coupled array of cubic nonlinear waveguides is described b}ﬁwove to the rightk<0) or left (k> 0), its motion is accom-

#2?mD(':(|a_eS gqguaac;r%g})that we write in the dimensionless panied by some radiation. Th_e effective_ lattice d_iscreteness
T i can be attributed to an effective periodic potential, the PN
du, 5 potential, which is dynamic and changes in time. Due to
Yy V(Ups1 + Up-g) + U Uy = 0, (1) both, the strong radiation and the presence of the PN barrier
which should be overtaken in order to move the beam trans-
whereu, is the amplitude of the effective electric-field enve- versally, the discrete soliton gets trapped at one of the
lope of the fundamental mode excited in thé waveguide waveguides in the array. In most of the cases, the shift of the
(normalized to the square root of the peak poweris pro- beam position to the neighboring waveguide is easy to
portional to the overlap integral of the electric field modes,achieve, as shown in many stud[@3]. However, the soliton
and it characterizes the coupling between the neighboringwitching becomes rather complicated and even chaotic. This
waveguides(normalized to the inverse of the coupling is shown in Fig. 2 where, for a fixed value of the input angle,
length), and z is the propagation distance along the wave-a slight variation in the beam intensity results in erratic
guide normalized to the coupling length. Parametés the  switching of the beam. A complete sweep is shown in Fig. 3
effective waveguide nonlinearity associated with the Kerr ef{left-hand sidg
fect of the core material, normalized to the product of inverse Modulated arraysIn this paper, we suggest to modulate
peak power and inverse coupling length. Figure 1 shows #e coupling in the waveguide array in order to achieve a
typical experimental structure of a quasi-one-dimensionatontrollable output and to engineer the switching results.
homogeneous waveguide array and the excitation scheme fivhat this modulation of the couplings does is to affect the
generating a discrete optical soliton. PN barrier, providing us with a simple physical mechanism
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A=1414 A=1416 A=1418 Odd modes.We consider a strongly localized mode
(SLM) in the form of three excited sites,

Un(2) = UM = Up{0 ... , 06,65, 1,6,67%,0, ... ,QeM?,
(5)

wherey, is the mode amplitudek is the parameter of the
initial “kick” (an effective transverse anglapplied to the
50 7 60 50 5860 S0 57 60 mode,\; is the longitudinal propagation constant, ands a
small parameter, to be determined from Eb). After substi-

FIG. 2. An example of erratic switching of a localized input tuting Eq.(5) into Eq. (1) and keeping only linear terms in
beam with a slight variation of the beam intensity in a homoge-¢,, we obtain
neous array, fovV=y=1.

A1 =26,V cogk) + yu3

for fine-tuning and control of the beam self-trapping. and e;=V cogk)/\,, S0 that
To justify the validity of our concept, we perform a quali-
tative estimate of the PN barrier in the framework of the A=~ Y3, €~ Vcogk)/yui<1. (6)
applicability of the discrete model and perturbation theory. )
We study the case of strongly localized mod24] propa- Even modedn this case, the SLM mode has the form

gating in a homogeneops Wayeguide array with id,e”ticahin(z):TJne'AZZzﬁo{O ,Oﬁzeik,lye—ik, eze—Zik,O, ....geM2,
coupling between the neighboring waveguides, described by
Eqg. (1). We consider a general localized mode that we want ()

to propagate throughout the array. Due to discreteness, oWhere, as abové, is the amplitude of the even modejs
system lacks the translational invariance and, as a resulfhe initial angle or effective parameter of the initial “kick,”
some external “kick” must be supplied in order to force the),, is the longitudinal propagation constant of the even mode,

mode to move. Another way to look at this problem is toand ¢, is a small parameter. After substituting Eg) into
consider that, because of the lattice discreteness, the locaty. (1) and keeping only linear terms i, we obtain

ized mode “sees” a potential barrighe PN barriey, whose —
height depends on the effective discreteness of the system as A2 =(1+€)V codk) + s
seen by the excitatiof21]. Thus, for wide modes, the barrier de=V K /) that

will be smaller that for narrow modes. A rough estimate ofan €=V codk)/Az, S0 tha

this PN barrier can be obtained by equating it to the differ- V cogk)

~ ~2 ~— v Y
ence in the values of the Hamiltonian, between the mode Np =V codk) +ylp, &= V cogk) + 2 <1l. (§
centered at a waveguidedd mode and the mode centered 0
between two neighboring waveguidgs/en modg [21]. From Egs.(6) and(8) we come to the conclusion that, in

In order to evaluate a change of the PN barrier for theorder to have strongly localized modes, the nonlinear contri-
mode initially kicked by an external force, we introduce anbution described by the termu3(or yi3) must be much
initial phase tilt that is proportional to the factor larger than the linear term described by the tevroogk).
~exp(—ikn) in the discrete case. Our purpose is not only toNow, for calculating the PN barrier, we should relate the
provide an extension to earlier resyl&l], but also to study, amplitudes of the modes of two different symmetries. One
for the first time to our knowledge, the variation of the ef- way is to think of both the modes as different states of a
fective PN potential for an initially kicked localized mode. single effective mode shifted by a half lattice site along the
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FIG. 3. Digitized switching of a discrete soliton in a cubic nonlinear waveguide array by varying the beam intenkity;6d® andy=1.
Left, homogeneous array faf=1. Right, engineered array for the coupling modulation shown in the inset.
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chain. This means that the power content of both modes must A=1414 A=1416 A=1418
be identical, since the powd?=X|u,(2)|? is a conserved
quantity. To the first order ir; ande,, we obtain

Podd: Ug + O(fi), Peven: ZUS + O(Eg) (9)

Thus, the relatiorPoys= Peyen implies uj~ 2U3. We are now
in position to computdd,qqandHee,for a strongly localized
mode, using the above relation and E@, (6), and(8),

50 6164 50 60 64 50 59 64
~_ 2
Hoda = 2u0 * O(e%), FIG. 4. Same as in Fig. 2, but in the engineered waveguide array
(10) with the coupling modulation shown in the inset of Fig. 3.
Y order to apply the concept of the coupling engineering at
Heven™ — —Ug - U(Z)V cogk) + O(e; - &), PPy P biing g g

each of these bad output beam positions, we perform a slight
o ) ) . change in their coupling to their neighbors, until that portion
which implies that the PN barriex'® for the nonlinear cubic o the ladder is restored to a monotonic form. At the end of
array is given by this process, one obtains the optimal coupling profile for the
given k that allows switching to a certain number of sites
A® =H gy~ Hoyon= - Zu6‘+ W2V cogk). (11)  [see Fig. Aright-hand sidg. It should be stressed thet, ,
4 the optimal coupling profile, will depend on momentum
(angle. One can also keep the amplitudefixed and vary

In comparison with the previously obtained result for thethe kickk, and proceed as before, modulating the coupling in
PN barrie21], Eq.(11) adds an extra, albeit small, term that order to obtain a monotonic “ladder” for switching. In this

shows how the PN barrier is modified for the mode initially case, the/, . will depend on the amplitudé
' n,m .

kicked in the lattice. Indeed, in addition to the first term An example of one such optimized structure, where we
dependent on the mode amplitude, EIf) also includes a o jate the coupling parametéy ., in a steplike manner, is
linear term proportional to the factaf cosk), whose mag-  ghown in the inset of Fig. 3. This also shows the discrete

nitude could be modified by a judicious adjustment of thepgsition of the soliton at the output as a function of the
waveguide couplings and/or the value of the initial kick.  amplitude of the input beam, at a fixed value of the steering
Dependence of the PN barrier on the mode coupling sugparametek=-0.9. In a remarkable contrast with other stud-
gests that, if we wish to find a way to engineer the value ofies (see, e.g., Ref17]), the coupling modulation allows the
the PN barrier in the lattice, we should study the propertiesachievement of a controllable digitized switching of discrete
of a modified model described by the evolution equation optical solitons in the array with very little or no distortion.
As is shown in Fig. 4, by decreasing the amplitude of the
input pulse at a fixed value of the steering paramk&tén
our example fixed to b&=-0.9), it is possible to achieve
o . self-trapping of the discrete soliton by the lattice at some
where the parametey,, describing the coupling between (shory distance from the input at different waveguide posi-
two guides with the indicess and m, can be modified tions. Due to the steplike modulated coupling, we create a
through a change in the spacing between the waveguides. Eelection between the beam motion to the right and left at the
study the beam steering in this model, we again use as amoment of trapping thus suppressing or eliminating the cha-
initial condition the sechlike profil€2), although thisis not a  otic trapping observed in homogeneous waveguide arrays. In
really fundamental limitation, as argued below. this way, we achieve a controllable digitized nonlinear
We mention that a variation of the waveguide coupling inswitching where the continuous change of the amplitude of
the array constitutes the starting point for our concept of thehe input beam results in a quantized systematic displace-
waveguide array engineering. A change of the couplingsnent of the output beam by an integer number of
breaks the symmetry between the beam motion to the righwaveguides. Consequently, for the parameters discussed
and left at the moment of trapping, thus eliminating chaoticabove we observe almost undistorted switching up to 11
trapping observed in the case of homogeneous arrays. waveguides. Incidentally, we notice here that the use of a
We have tested different types of modulation in the arraylinear ramp potentiafe.g., in the formV,=an) for this pur-
coupling and the corresponding structures of the waveguidpose does not lead to an effective switching. Instead, it
superlattices. The procedure is as follows: For a homogemakes the soliton switching even more chaotic due to the
neous arraywhenV is constanyt, we launch a transversally phenomenon of Bloch oscillations which become random-
localized beam of amplituda, with the transversal momen- ized in the nonlinear regimg22].
tumk, and record the position of the output beam after many In Fig. 5 we show another example of an homogeneous
coupling lengths, as a function of the initial amplitude  array (left-hand sidg¢ and an array with the optimized cou-
This switching plot has a ladderlike structure, as shown irpling modulation(right-hand sidg this time as a function of
Fig. 3 (left-hand side& However, the output beam position the effective input kick, for a fixed beam intensity. In this
jumps discontinuously at certain amplitudesThus, the lad- case, we can achieve completely controlled switching up to
der (switching curve is not optimal(i.e., not monotonig In  nine waveguides.

du
Id_Zn + Vn+1,nun+1 + Vn,n—lun—l + ')’|un|2un =0, (12
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FIG. 5. Digitized switching of a discrete soliton in a cubic nonlinear waveguide array by varying the beam input angte] 86 and
v=1. Left, homogeneous array fof=1. Right, engineered array for the coupling modulation shown in the inset.

If the input beam was to excite initially five waveguides quency conversion, and it may produce the effects which
instead of three creating in this manner a wider excitatiorresemble those known to occur in cubic nonlinear materials.
(i.e., being closer to the continuum liribne could expect a Typical examples are all-optical switching phenomena in in-
smaller amount of radiation emitted. However, this wouldterferometric or coupler configurations, and the formation of
imply a longer distance before the beam gets trapped by orgpatial and temporal solitons in planar waveguiges, e.g.,
of the waveguides in the array due to the effective PN poRef. [25] and the references thergin
tential. Also, this means that one could, in principle, switch Recently, it was demonstrated theoreticdl36—29 that
the soliton beam to any desired waveguide in the waveguidarrays of quadratic nonlinear waveguides represent a conve-
array, no matter how far; it would just be a matter of choos-nient system to verify experimentally many theoretical pre-
ing an initial beam wide enough, i.e., closer to the continuundictions for the dynamics of nonlinear lattices with cubic
(in addition to optimize the coupling in a stepwise manner nonlinearity. The first experimental observation of discrete
by removing the random selection between the directiongjuadratic solitons has been reported recently by lwanow and
and suppressing the beam random switching. co-workers[19], who demonstrated the formation of discrete

Another observation is that the sechlike initial profile is quadratic solitons in periodically poled lithium niobate
not really fundamental. We have verified that similar dynam-waveguide arrays, excited with fundamental wave pulses at a
ics is observed for other types of input beam profiles, includwavelength of 1572 nm. These experimental observations

ing a kicked nonlinear impuritylike input of the forfi23] open many perspectives for employing much larger nonlin-
b _ A(P)2\ 02 earit.ies provided by nonlinear quadratic materials. .In. .this

u (O):A(P)< (P) ) grikin-ng) (13) section, we extend the concept of the controlled digitized

" P+ A(P)? soliton switching discussed above to the case of quadratic

whereA(P)2=\P?-(2V/y)? and(P>2V/y). The reason for discrete solitons.

this universal behavior seems to rest on the observation that
for any system with local nonlinearity a narrow initial profile
will render the system into an effective linear one containing The standard discrete model for an array of weakly
a small nonlinear clustefor even a single sijethe bound coupled quadratic nonlinear waveguides has the fi@m
state will therefore strongly resemble that corresponding to a

i . . d "
nonlinear impurity[24]. id—azn + V(a1 + an-1) + 2y5b,8,=0,

A. Discrete model

IIl. QUADRATIC NONLINEAR WAVEGUIDES

d

Up to now we have discussed the arrays of weakly id_b|zﬂl+vb(bn+1+ bn-1) + By + y,85=0, (14)
coupled waveguides with cubic nonlinearity. However, in the
last few years a growing interest has been observed in theherea, andb, represent the amplitudes for the fundamental
study of nonlinear optical effects based on the so-called qua-w) and second harmoni@w) fields in thenth guide andv,
dratic nonlinearities. In contrast to the conventional studiesand V,, stand for the linear couplings between the nearest-
of quadratic nonlinearities, where the main attention is cenneighbor waveguides. Parametgr describes the nonlinear
tered primarily on parametric processes and the frequencyecond-order coefficient proportional to the second-order di-
conversion, more recent works are focused on the phasslectric susceptibility, angB is the effective mismatch be-
modulation of the fundamental as well as the second hartween the fields in the array.
monic waves[25]. This phase modulation accompanies the As in the case of the cubic nonlinearity, the systeid)
familiar amplitude modulation, being the basis of any fre-possesses two conserved quantities, the total power,
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5= (bo/ \)(2h,~ B (1+by)V COS2K)),  Fy=(Va/Ap)cOSK)
and b; =V, cog2k)/(2\,—B). From these relations, we find
\o=V, cogKk) +2y,by, which implies

P=2 (|a,(2]* + 2lby2)) (15)
n
and the system Hamiltonian,

H== 2 (Vady@ne1 + Vobobnet + (B12)[ 0y + y,a3b, + c.c). B2 ~ 4b2 - (By/ y2)[ B — 2V, cogk) +V,, cog2K)],
n

(16) _ V, cogk)
. . . . ~—————— <1, (20)
However, unlike the case of the cubic nonlinear waveguide V, cogk) + 2y,by
arrays, where it is possible to find analytical solutions in the
continuum limit which can be used as input profiles for nu- ~ Vj, cog(2k)
merical simulations of discrete solitons, in the case of the b, = <1.

2V, cosk) + 4,bo ~ B
From Eq.(18) and Eq.(20), it is easy to see that, in order

quadratic nonlinearities no exact solutions are available.

Thus, we should resort to the limit of strongly localized

modes(SLMs) in order to calculate the PN barrier and use . .

the SLM profile as an input beam profile for the numerical®© °btain SLM, the nonlinear termybq(by) should be much

computation of the soliton switching. {‘;‘rge;zﬂ;a” the linear coupling termsy,cosk) and
p CO .

B. Localized modes and the PN barrier From Eq.(15) we calculate the total power

As in the case of the cubic nonlinearity, we calculate the Poga= a5+ 205 + O(as,b?), (21
PN barrier as a difference between the values of the Hamil-
tonian for the odd and even strongly localized two- Poyon= 25(2) + 4b(2,+ O("éi.bi), (22)

component modes. -
Odd modesWe search for approximate solutions of Eq. and the Hamiltonian of each mode,

14) of the form
(19 . § . Hoaq= — 4a3a,V, cosk) — 4b3b,V,, cog2k) — b3 — 2y,a3b,
a,=agf...,03,€%,1,2,€7%,0, ...}e"*

@ +0(ad, b)), (23
b,=bol...,00,67% 1,b,e72K 0, ...}e? 2, ) IS
. . Heven% - 250(1 + 25-1)\/51 COS(k) - 2’)’2aobo - 4b0(1
where a5 and by are the amplitudes of two harmonics - ~ -
composing a localized modé is the initial beam angle + 2b,)V,, cog2k) — 28b3 + O(&3,b?). (24)

or effective kick,\, is the longitudinal propagation constant,
anda; andb; are small parameters that should be determine(;]0
from the equations. After substituting the ansatk?)
into Eqgs.(14) and keeping only linear terms ia, and b,
we obtain \,=2a,V, cogk)+2ybo, a3=(by/ yo)[2\,-
-2b,V, co92k)], a;=(Va/\y)cogk), and bl=Vbcog2k)/
(2\1-B). From these relations, we find, = 2y,b,, which

We follow the same reasoning as in the case of the cubic
nlinear waveguide arrays and calculate the effective PN
barrier. Such calculations look simpler for the physically im-
portant case of vanishing mismatcB~0. With that as-
sumption, and imposing that the power content of both, odd
and even modes, are equa,ys=Pee, We obtain 3)%

~6b 2+ (o/ y,)[2V, cogk) -V, cog2K)], and then

implies
~ b 2V, cogKk) — V,, coq2k
a2 ~ 4b2 - (Bly,)bo, By ~ ’_2_[ a cogk) -V, cog )]. 25
(18) V2 12y,
_ Vacosk) ., Vicod2k) In terms ofby, the Hamiltonian of both the modes can be
' 2y, "N 4yby- B approximated as

Even modedNow we search for approximate solutions of

Egs.(14) of the form

B0 =3of..., 0Bk, L& 3e 2K,0, .. Je7,
(19

by =bof...,00,62% 1,62 ek, 0, ...},

Hoda = — 87205 + O(aZ,b?), (26)
Heoven= — 412,03 = 8V,02 cogk) — 4V, b2 cog2k)
+O(asay, blBl) . (27

Finally, in this approximation, we calculate the PN barrier of

where3, and by are the amplitudes of the coupled harmon-the strongly localized modes,

ics, k is the initial beam angle or effective kick,, is the

longitudinal propagation constant aiag andBl are small
parameters determined from the equations of motion. After

AP = Hggg— Heyen™ — 8Cy,b3 + b3[4V, cogk)

+V, coq2Kk)], (28)

substituting Eq(19) into Eq. (14) and keeping only linear whereC=(1-42/2). This PN barrier for an array of nonlin-

terms in3, andBl, we obtain\,=(1+a;)V, cos(k)+2y250,

ear quadratic waveguidg28) shows some interesting fea-
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FIG. 6. Digitized switching of a discrete soliton in a quadratic nonlinear waveguide array by varying the fundamental beam intensity, for
k=-1, =0 andy,=1. Left: homogeneous array f&,=V,=0.3. Right: engineered array for the coupling modulation shown in the inset.

tures: The main term i28) is cubic in the mode amplitude, fields act as a strongly coupled state, and that no lagging

while for the cubic case it is quartisee Eq(11)]. Also we  behind was observed in any of the modes with respect to the

notice that the first correction to the PN barri@B) is linear  other.

in the couplings, and it depends on the square of the SLM We have performed other simulations with the quadratic

amplitude. This is exactly the same term as in the case of theonlinear array including the cas¥s=0 (decoupled second-

nonlinear cubic array. Thus, the first-order correction is morénarmonic fields in the arrgyandV,=«aV, (reduced coupling
important in the nonlinear quadratic array than that in theof the second-harmonic fielgwith a«<<1, etc. In all of those
nonlinear cubic array suggesting that the appropriate engieases, we have observed the digitized switching of the dis-
neering of the couplings and/or input kick to achieve digi-crete solitons by engineering the coupling in the array as
tized switching should be easier to achieve. discussed above.
For the numerical simulations, we use the initial input in
the form of an odd mode,
) IV. CONCLUSIONS
3(0) = agal’ e, .

(29) ' We have suggest'ed and demonstrated' numerlgally a
simple but yet effective method for controlling nonlinear
switching of discrete solitons in arrays of weakly coupled

for n-n.=0, +1, anda,(0)=b,(0)=0, otherwise. In Eq29)  Optical waveguides. We have demonstrated how to achieve

we use ag~ V,m, a,~V,/2y,b, and by the digitized swnchmgl of discrete op.t|cal so_htons in weakly
~V,/(4y,00-B). We consider an array of 41 waveguides couplgd arrays of cubic and quadra_t|c no_nlmgar waveg.wdes
with the initial input centered at the middle,=20. For sim- d.escrt;beg', n t?e fra[jnelwork ﬁf thetr:lgkg-l\lbll_rg:img a;t)_promTr?—

plicity, we also assume the case of complete phase matchin ?n,l'ky 'S(.:rf. N m?tf S suc a_sd € i equa |ort1 WIO a

i.e., B~0, and identical coupling for both the harmonic epl el\q/a_rla |?n 0 ewzlivegwl_ke cour:jmlg _pararpeher. ur

fields,V, ,=V,, . Figure 6 shows an uncontrollable switching alpproac Involves a weak steplike modulation of the cou-

for a homogeneous arrajeft-hand sid¢ and a controlled ping s.treng_th (or, equwalgntly, dlstqnce between the
digitized switching of an engineered arrayight-hand wavegu!de}s n the arrays with the perlod Iarge_r than the
sidg of the discrete two-frequency (fundamental waveguide spacing. Such superlattice waveguide structure

+second harmonjcsoliton, by varying the intensity of the
input fundamental mode for a fixed parameker—1. The
inset of Fig. 6(right-hand sidgshows the coupling modula-
tion required to achieve this type of engineered soliton
switching, which is particularly simple and consists of only a
single change of about 5% in the value of the coupling pa-
rameter. Figure 7 demonstrates the switching of the discrete
mode, composed of the fundamental and second-harmonic
fields, to six, five, and four neighboring waveguides, as the
intensity of the input fundamental mode is increased. In this  FIG. 7. Switching to 6, 5, and 4 sites of a discrete quadratic
respect, it is interesting to point out that in all cases of thesoliton (SLM) with a slight intensity variation of the fundamental
digital switching both the fundamental and second-harmonienode, with the coupling modulation shown in the inset of Fig. 6.

bn(O) — boblf_ncl e—2i (n-nc)k,

ao =0.912 ao = 0.955 ao = 0.965

20 2629 20 25 29 20 24 29
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