
Switching of discrete optical solitons in engineered waveguide arrays

Rodrigo A. Vicencio,1 Mario I. Molina,1 and Yuri S. Kivshar2
1Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

2Nonlinear Physics Group and Centre for Ultra-High Bandwidth Devices for Optical Systems (CUDOS),
Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia

(Received 22 January 2004; revised manuscript received 23 March 2004; published 13 August 2004)

We demonstrate a simple concept for controlling nonlinear switching of discrete solitons in arrays of weakly
coupled optical waveguides, for both cubic and quadratic nonlinear response. Based on the effective discrete
nonlinear equations describing light propagation in the waveguide arrays in the tight-binding approximation,
we demonstrate the key ideas of the array engineering by means of a steplike variation of the waveguide
coupling. We demonstrate the digitized switching of a narrow input beam for up to 11 neighboring waveguides,
in the case of the cubic nonlinearity, and up to 10 waveguides, in the case of the quadratic nonlinearity. We
discuss our predictions in terms of the physics of the engineered Peierls-Nabarro(PN) potential experienced by
strongly localized nonlinear modes in a lattice, and calculate the PN potential for the quadratic nonlinear array
for the first time.
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I. INTRODUCTION

Discrete nonlinear systems are known to support self-
localized modes that exist due to an interplay between a cou-
pling between the lattice sites and nonlinearity[1]. Such spa-
tially localized modes of discrete nonlinear lattices existing
without defects are known as discrete solitons or intrinsic
localized modes; they appear in many diverse areas of phys-
ics such as biophysics, nonlinear optics, and solid state phys-
ics [2,3]. More recently, such modes have been predicted in
the studies of the Bose-Einstein condensates in optical lat-
tices [4] and photonic-crystal waveguides and circuits[5].

One of the most important applications of discrete soli-
tons is found in nonlinear optics where discrete optical soli-
tons were first suggested theoretically by Christodoulides
and Joseph[6] for an array of weakly coupled optical
waveguides. Because the use of discrete solitons promises an
efficient way to realize and control multiport nonlinear
switching in systems of many coupled waveguides, this field
has been explored extensively during the last 10 years in a
number of theoretical papers(see, e.g., Refs.[7–9], as an
example). More importantly, discrete solitons have also been
generated experimentally in fabricated periodic waveguide
structures(see, e.g.,[10,11] for original papers reporting on
the experimental observations and also[12–14] for recent
review papers).

The majority of theoretical studies conducted so far is
devoted to the analysis of different types of stationary local-
ized modes in discrete nonlinear models and their stability.
Consequently, experimental papers have reported on the ob-
servation of self-trapped states in the periodic systems with
broken translational symmetry and some of their properties,
in both focusing and defocusing regimes[12–14]. However,
only very few studies and experimental demonstrations ad-
dressed more specific properties of localized modes intro-
duced by discreteness such as the soliton steering in and
discreteness-induced trapping by the lattice(see, e.g., Ref.
[15]). As a result, very little effort has been made so far to
link these findings with realistic applications of discrete soli-
tons for multiport all-optical switching.

Indeed, one of the major problems for achieving control-
lable multiport all-optical switching of discrete solitons in
waveguide arrays is the existence of an effective periodic
Peierls-Nabarro(PN) potential which appears due to the lat-
tice discreteness. As a consequence of this potential, a nar-
row large-amplitude discrete soliton does not propagate
freely in the lattice and, instead, becomes trapped by the
array. Several ideas to exploit the discreteness properties of
the array for digitized all-optical switching have been sug-
gested[16,17]. However, the main result of those earlier
studies is the observation that the discrete solitons can be
well controlled only in the limit of broad beams, whereas the
soliton dynamics in highly discrete arrays has been shown to
be more complicated and even chaotic[17].

In this paper, we explore in detail an effective way to
control nonlinear switching of discrete solitons in arrays of
weakly coupled optical waveguides earlier suggested in our
brief letter [18]. First, using the discrete model valid in the
tight-binding approximation, we estimate the PN potential
experienced by a strongly localized nonlinear mode that is
kicked initially in a cubic nonlinear waveguide array. The
result suggests a possible control mechanism for the switch-
ing of strongly localized excitations by means of a steplike
variation of the waveguide coupling. For particular types of
the engineered arrays, we are able to demonstrate the digi-
tized switching of a narrow input beam for up to 11
waveguides, for the case of cubic nonlinearity. We also ex-
tend the concept of controllable digitized switching of dis-
crete optical solitons to the case of quadratic nonlinear wave-
guide arrays, where the experimental observation of discrete
optical solitons has been reported very recently[19]. Here,
we obtain, for the first time to our knowledge, the PN poten-
tial for the discrete soliton and demonstrate numerically the
digitized switching for up to 10 waveguides.

The paper is organized as follows. In Sec. II we study the
arrays of cubic nonlinear waveguides. First, we consider the
system dynamics described by the discrete nonlinear
Schrödinger equation, and show how to modulate the wave-
guide coupling in order to suppress the chaotic dynamics and
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achieve fully controllable digitized switching. Next, in Sec.
III we extend our analysis to the arrays of weakly coupled
quadratic nonlinear waveguides, where discrete quadratic
solitons are composed of the coupled beams of the funda-
mental and second-harmonic fields. Finally, Sec. IV con-
cludes the paper.

II. CUBIC NONLINEAR WAVEGUIDES

The most common theoretical approach to studying the
discrete optical solitons in arrays of weakly coupled optical
waveguides is based on the decomposition of the electric
field of the periodic photonic structure into a sum of weakly
coupled fundamental modes excited in each waveguide of
the array; in solid-state physics this approach is known as the
tight-binding approximation. According to this approach, the
wave dynamics is described by an effective discrete nonlin-
ear Schrödinger(DNLS) equation that possesses spatially lo-
calized stationary solutions in the form of discrete localized
modes. Many properties of the discrete optical solitons can
be analyzed in the framework of this approach and the
DNLS equation[6,9].

Homogeneous arrays. A standard model of a weakly
coupled array of cubic nonlinear waveguides is described by
the DNLS equation[6] that we write in the dimensionless
form (see, e.g., Ref.[9]),

i
dun

dz
+ Vsun+1 + un−1d + guunu2un = 0, s1d

whereun is the amplitude of the effective electric-field enve-
lope of the fundamental mode excited in thenth waveguide
(normalized to the square root of the peak power), V is pro-
portional to the overlap integral of the electric field modes,
and it characterizes the coupling between the neighboring
waveguides(normalized to the inverse of the coupling
length), and z is the propagation distance along the wave-
guide normalized to the coupling length. Parameterg is the
effective waveguide nonlinearity associated with the Kerr ef-
fect of the core material, normalized to the product of inverse
peak power and inverse coupling length. Figure 1 shows a
typical experimental structure of a quasi-one-dimensional
homogeneous waveguide array and the excitation scheme for
generating a discrete optical soliton.

Steering and trapping of discrete optical solitons have
been analyzed in the framework of the model(1) in a number
of theoretical studies. Being kicked by an external force, the
discrete soliton propagates through the lattice for some dis-
tance, but then it gets trapped by the lattice due to the dis-
creteness effects. For a stronger kick, the output soliton po-
sition fluctuates between two(or more) neighboring
waveguides making the switching uncontrollable[17].

In order to show this feature, first we consider homoge-
neous arrays and select an input profile in the form of a
narrow sechlike beam localized on a few waveguides follow-
ing the earlier study by Królikowskiet al. [20]:

uns0d = A sechfAsn − ncd/Î2ge−iksn−ncd, s2d

for n−nc=0, ±1, anduns0d=0, otherwise. For the particular
results presented below, we consider an array of 101
waveguides and place the beam at the middle position,nc
=50. The maximum normalized propagation distance used in
our simulations iszmax=45. Parameterk in the ansatz(2) has
the meaning of the transverse steering velocity of the beam,
in analogy with the continuous approximation. It describes
the value of an effective kick of the beam in the transversal
direction at the input, in order to achieve the beam motion
and shift into one of the neighboring(or other desired) wave-
guide outputs.

In our simulations, we control the numerical accuracy by
monitoring the two conserved quantities of model(1), the
soliton power

P = o
n

uunszdu2, s3d

and the system Hamiltonian,

H = − o
n

hVsunun+1
* + un

*un+1d + sg/2duunu4j. s4d

The input condition(2) does not correspond to an exact
stationary solution of the discrete equation(1) even for k
=0 and, as the input kickskÞ0d forces the localized wave
move to the rightsk,0d or left sk.0d, its motion is accom-
panied by some radiation. The effective lattice discreteness
can be attributed to an effective periodic potential, the PN
potential, which is dynamic and changes in time. Due to
both, the strong radiation and the presence of the PN barrier
which should be overtaken in order to move the beam trans-
versally, the discrete soliton gets trapped at one of the
waveguides in the array. In most of the cases, the shift of the
beam position to the neighboring waveguide is easy to
achieve, as shown in many studies[17]. However, the soliton
switching becomes rather complicated and even chaotic. This
is shown in Fig. 2 where, for a fixed value of the input angle,
a slight variation in the beam intensity results in erratic
switching of the beam. A complete sweep is shown in Fig. 3
(left-hand side).

Modulated arrays. In this paper, we suggest to modulate
the coupling in the waveguide array in order to achieve a
controllable output and to engineer the switching results.
What this modulation of the couplings does is to affect the
PN barrier, providing us with a simple physical mechanism

FIG. 1. Example of a homogeneous waveguide array and the
generation of a discrete soliton by exciting a single waveguide.
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for fine-tuning and control of the beam self-trapping.
To justify the validity of our concept, we perform a quali-

tative estimate of the PN barrier in the framework of the
applicability of the discrete model and perturbation theory.
We study the case of strongly localized modes[21] propa-
gating in a homogeneous waveguide array with identical
coupling between the neighboring waveguides, described by
Eq. (1). We consider a general localized mode that we want
to propagate throughout the array. Due to discreteness, our
system lacks the translational invariance and, as a result,
some external “kick” must be supplied in order to force the
mode to move. Another way to look at this problem is to
consider that, because of the lattice discreteness, the local-
ized mode “sees” a potential barrier(the PN barrier), whose
height depends on the effective discreteness of the system as
seen by the excitation[21]. Thus, for wide modes, the barrier
will be smaller that for narrow modes. A rough estimate of
this PN barrier can be obtained by equating it to the differ-
ence in the values of the Hamiltonian, between the mode
centered at a waveguide(odd mode) and the mode centered
between two neighboring waveguides(even mode) [21].

In order to evaluate a change of the PN barrier for the
mode initially kicked by an external force, we introduce an
initial phase tilt that is proportional to the factor
,exps−iknd in the discrete case. Our purpose is not only to
provide an extension to earlier results[21], but also to study,
for the first time to our knowledge, the variation of the ef-
fective PN potential for an initially kicked localized mode.

Odd modes.We consider a strongly localized mode
(SLM) in the form of three excited sites,

unszd = une
il1z < u0h0 . . . ,0,e1e

ik,1,e1e
−ik,0, . . . ,0jeil1z,

s5d

whereu0 is the mode amplitude,k is the parameter of the
initial “kick” (an effective transverse angle) applied to the
mode,l1 is the longitudinal propagation constant, ande1 is a
small parameter, to be determined from Eq.(1). After substi-
tuting Eq. (5) into Eq. (1) and keeping only linear terms in
e1, we obtain

l1 = 2e1V cosskd + gu0
2

ande1=V cosskd /l1, so that

l1 < gu0
2, e1 < V cosskd/gu0

2 ! 1. s6d

Even modes.In this case, the SLM mode has the form

ũnszd = ũne
il2z < ũ0h0 . . . ,0,e2e

ik,1,e−ik,e2e
−2ik,0, . . . ,0jeil2z,

s7d

where, as above,ũ0 is the amplitude of the even mode,k is
the initial angle or effective parameter of the initial “kick,”
l2 is the longitudinal propagation constant of the even mode,
and e2 is a small parameter. After substituting Eq.(7) into
Eq. (1) and keeping only linear terms ine2, we obtain

l2 = s1 + e2dV cosskd + gũ0
2

ande2=V cosskd /l2, so that

l2 < V cosskd + gũ0
2, e2 <

V cosskd
V cosskd + gũ0

2 ! 1. s8d

From Eqs.(6) and(8) we come to the conclusion that, in
order to have strongly localized modes, the nonlinear contri-
bution described by the termgu0

2sor gũ0
2d must be much

larger than the linear term described by the termV cosskd.
Now, for calculating the PN barrier, we should relate the
amplitudes of the modes of two different symmetries. One
way is to think of both the modes as different states of a
single effective mode shifted by a half lattice site along the

FIG. 2. An example of erratic switching of a localized input
beam with a slight variation of the beam intensity in a homoge-
neous array, forV=g=1.

FIG. 3. Digitized switching of a discrete soliton in a cubic nonlinear waveguide array by varying the beam intensity, fork=−0.9 andg=1.
Left, homogeneous array forV=1. Right, engineered array for the coupling modulation shown in the inset.
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chain. This means that the power content of both modes must
be identical, since the powerP=onuunszdu2 is a conserved
quantity. To the first order ine1 ande2, we obtain

Podd= u0
2 + Ose1

2d, Peven= 2ũ0
2 + Ose2

2d. s9d

Thus, the relationPodd=Peven implies u0
2<2ũ0

2. We are now
in position to computeHodd andHevenfor a strongly localized
mode, using the above relation and Eqs.(4), (6), and(8),

Hodd< −
g

2
u0

4 + Ose1
2d,

s10d

Heven< −
g

4
u0

4 − u0
2V cosskd + Ose1 · e2d,

which implies that the PN barrierDs3d for the nonlinear cubic
array is given by

Ds3d = Hodd− Heven< −
g

4
u0

4 + u0
2V cosskd. s11d

In comparison with the previously obtained result for the
PN barrier[21], Eq.(11) adds an extra, albeit small, term that
shows how the PN barrier is modified for the mode initially
kicked in the lattice. Indeed, in addition to the first term
dependent on the mode amplitude, Eq.(11) also includes a
linear term proportional to the factorV cosskd, whose mag-
nitude could be modified by a judicious adjustment of the
waveguide couplings and/or the value of the initial kick.

Dependence of the PN barrier on the mode coupling sug-
gests that, if we wish to find a way to engineer the value of
the PN barrier in the lattice, we should study the properties
of a modified model described by the evolution equation

i
dun

dz
+ Vn+1,nun+1 + Vn,n−1un−1 + guunu2un = 0, s12d

where the parameterVn,m, describing the coupling between
two guides with the indicesn and m, can be modified
through a change in the spacing between the waveguides. To
study the beam steering in this model, we again use as an
initial condition the sechlike profile(2), although this is not a
really fundamental limitation, as argued below.

We mention that a variation of the waveguide coupling in
the array constitutes the starting point for our concept of the
waveguide array engineering. A change of the couplings
breaks the symmetry between the beam motion to the right
and left at the moment of trapping, thus eliminating chaotic
trapping observed in the case of homogeneous arrays.

We have tested different types of modulation in the array
coupling and the corresponding structures of the waveguide
superlattices. The procedure is as follows: For a homoge-
neous array(whenV is constant), we launch a transversally
localized beam of amplitudeA, with the transversal momen-
tum k, and record the position of the output beam after many
coupling lengths, as a function of the initial amplitudeA.
This switching plot has a ladderlike structure, as shown in
Fig. 3 (left-hand side). However, the output beam position
jumps discontinuously at certain amplitudesA. Thus, the lad-
der (switching curve) is not optimal(i.e., not monotonic). In

order to apply the concept of the coupling engineering at
each of these bad output beam positions, we perform a slight
change in their coupling to their neighbors, until that portion
of the ladder is restored to a monotonic form. At the end of
this process, one obtains the optimal coupling profile for the
given k that allows switching to a certain number of sites
[see Fig. 3(right-hand side)]. It should be stressed thatVn,m,
the optimal coupling profile, will depend on momentumk
(angle). One can also keep the amplitudeA fixed and vary
the kickk, and proceed as before, modulating the coupling in
order to obtain a monotonic “ladder” for switching. In this
case, theVn,m will depend on the amplitudeA.

An example of one such optimized structure, where we
modulate the coupling parameterVn,m in a steplike manner, is
shown in the inset of Fig. 3. This also shows the discrete
position of the soliton at the output as a function of the
amplitude of the input beam, at a fixed value of the steering
parameterk=−0.9. In a remarkable contrast with other stud-
ies (see, e.g., Ref.[17]), the coupling modulation allows the
achievement of a controllable digitized switching of discrete
optical solitons in the array with very little or no distortion.

As is shown in Fig. 4, by decreasing the amplitude of the
input pulse at a fixed value of the steering parameterk (in
our example fixed to bek=−0.9), it is possible to achieve
self-trapping of the discrete soliton by the lattice at some
(short) distance from the input at different waveguide posi-
tions. Due to the steplike modulated coupling, we create a
selection between the beam motion to the right and left at the
moment of trapping thus suppressing or eliminating the cha-
otic trapping observed in homogeneous waveguide arrays. In
this way, we achieve a controllable digitized nonlinear
switching where the continuous change of the amplitude of
the input beam results in a quantized systematic displace-
ment of the output beam by an integer number of
waveguides. Consequently, for the parameters discussed
above we observe almost undistorted switching up to 11
waveguides. Incidentally, we notice here that the use of a
linear ramp potential(e.g., in the formVn=an) for this pur-
pose does not lead to an effective switching. Instead, it
makes the soliton switching even more chaotic due to the
phenomenon of Bloch oscillations which become random-
ized in the nonlinear regime[22].

In Fig. 5 we show another example of an homogeneous
array (left-hand side) and an array with the optimized cou-
pling modulation(right-hand side), this time as a function of
the effective input kick, for a fixed beam intensity. In this
case, we can achieve completely controlled switching up to
nine waveguides.

FIG. 4. Same as in Fig. 2, but in the engineered waveguide array
with the coupling modulation shown in the inset of Fig. 3.
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If the input beam was to excite initially five waveguides
instead of three creating in this manner a wider excitation
(i.e., being closer to the continuum limit), one could expect a
smaller amount of radiation emitted. However, this would
imply a longer distance before the beam gets trapped by one
of the waveguides in the array due to the effective PN po-
tential. Also, this means that one could, in principle, switch
the soliton beam to any desired waveguide in the waveguide
array, no matter how far; it would just be a matter of choos-
ing an initial beam wide enough, i.e., closer to the continuum
(in addition to optimize the coupling in a stepwise manner),
by removing the random selection between the directions
and suppressing the beam random switching.

Another observation is that the sechlike initial profile is
not really fundamental. We have verified that similar dynam-
ics is observed for other types of input beam profiles, includ-
ing a kicked nonlinear impuritylike input of the form[23]

uns0d = AsPdSP − AsPd2

P + AsPd2Dun−ncu/2

e−iksn−ncd. s13d

whereAsPd2=ÎP2−s2V/gd2 andsP.2V/gd. The reason for
this universal behavior seems to rest on the observation that
for any system with local nonlinearity a narrow initial profile
will render the system into an effective linear one containing
a small nonlinear cluster(or even a single site); the bound
state will therefore strongly resemble that corresponding to a
nonlinear impurity[24].

III. QUADRATIC NONLINEAR WAVEGUIDES

Up to now we have discussed the arrays of weakly
coupled waveguides with cubic nonlinearity. However, in the
last few years a growing interest has been observed in the
study of nonlinear optical effects based on the so-called qua-
dratic nonlinearities. In contrast to the conventional studies
of quadratic nonlinearities, where the main attention is cen-
tered primarily on parametric processes and the frequency
conversion, more recent works are focused on the phase
modulation of the fundamental as well as the second har-
monic waves[25]. This phase modulation accompanies the
familiar amplitude modulation, being the basis of any fre-

quency conversion, and it may produce the effects which
resemble those known to occur in cubic nonlinear materials.
Typical examples are all-optical switching phenomena in in-
terferometric or coupler configurations, and the formation of
spatial and temporal solitons in planar waveguides(see, e.g.,
Ref. [25] and the references therein).

Recently, it was demonstrated theoretically[26–28] that
arrays of quadratic nonlinear waveguides represent a conve-
nient system to verify experimentally many theoretical pre-
dictions for the dynamics of nonlinear lattices with cubic
nonlinearity. The first experimental observation of discrete
quadratic solitons has been reported recently by Iwanow and
co-workers[19], who demonstrated the formation of discrete
quadratic solitons in periodically poled lithium niobate
waveguide arrays, excited with fundamental wave pulses at a
wavelength of 1572 nm. These experimental observations
open many perspectives for employing much larger nonlin-
earities provided by nonlinear quadratic materials. In this
section, we extend the concept of the controlled digitized
soliton switching discussed above to the case of quadratic
discrete solitons.

A. Discrete model

The standard discrete model for an array of weakly
coupled quadratic nonlinear waveguides has the form[9]

i
dan

dz
+ Vasan+1 + an−1d + 2g2bnan

* = 0,

i
dbn

dz
+ Vbsbn+1 + bn−1d + bbn + g2an

2 = 0, s14d

wherean andbn represent the amplitudes for the fundamental
svd and second harmonics2vd fields in thenth guide andVa

and Vb stand for the linear couplings between the nearest-
neighbor waveguides. Parameterg2 describes the nonlinear
second-order coefficient proportional to the second-order di-
electric susceptibility, andb is the effective mismatch be-
tween the fields in the array.

As in the case of the cubic nonlinearity, the system(14)
possesses two conserved quantities, the total power,

FIG. 5. Digitized switching of a discrete soliton in a cubic nonlinear waveguide array by varying the beam input angle, forA=1.55 and
g=1. Left, homogeneous array forV=1. Right, engineered array for the coupling modulation shown in the inset.
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P = o
n

suanszdu2 + 2ubnszdu2d s15d

and the system Hamiltonian,

H = − o
n

sVaan
*an+1 + Vbbn

*bn+1 + sb/2dubnu2 + g2an
2bn

* + c.c.d.

s16d

However, unlike the case of the cubic nonlinear waveguide
arrays, where it is possible to find analytical solutions in the
continuum limit which can be used as input profiles for nu-
merical simulations of discrete solitons, in the case of the
quadratic nonlinearities no exact solutions are available.
Thus, we should resort to the limit of strongly localized
modes(SLMs) in order to calculate the PN barrier and use
the SLM profile as an input beam profile for the numerical
computation of the soliton switching.

B. Localized modes and the PN barrier

As in the case of the cubic nonlinearity, we calculate the
PN barrier as a difference between the values of the Hamil-
tonian for the odd and even strongly localized two-
component modes.

Odd modes: We search for approximate solutions of Eq.
(14) of the form

an = a0h. . .,0,a1e
ik,1,a1e

−ik,0, . . .jeil1z,
s17d

bn = b0h. . .,0,b1e
2ik,1,b1e

−2ik,0, . . .je2il1z,

where a0 and b0 are the amplitudes of two harmonics
composing a localized mode,k is the initial beam angle
or effective kick,l1 is the longitudinal propagation constant,
anda1 andb1 are small parameters that should be determined
from the equations. After substituting the ansatz(17)
into Eqs. (14) and keeping only linear terms ina1 and b1,
we obtain l1=2a1Va cosskd+2g2b0, a0

2=sb0/g2df2l1−b
−2b1Vb coss2kdg, a1=sVa/l1dcosskd, and b1=Vbcoss2kd /
s2l1−bd. From these relations, we findl1<2g2b0, which
implies

a0
2 < 4b0

2 − sb/g2db0,

s18d

a1 <
Va cosskd

2g2b0
! 1, b1 <

Vb coss2kd
4g2b0 − b

! 1.

Even modes.Now we search for approximate solutions of
Eqs.(14) of the form

ãn = ã0h. . .,0,ã1e
ik,1,e−ik,ã1e

−2ik,0, . . .jeil2z,
s19d

b̃n = b̃0h. . .,0,b̃1e
2ik,1,e−2ik,b̃1e

−4ik,0, . . .je2il2z,

whereã0 and b̃0 are the amplitudes of the coupled harmon-
ics, k is the initial beam angle or effective kick,l2 is the

longitudinal propagation constant andã1 and b̃1 are small
parameters determined from the equations of motion. After
substituting Eq.(19) into Eq. (14) and keeping only linear

terms in ã1 and b̃1, we obtainl2=s1+ã1dVa cosskd+2g2b̃0,

ã0
2=sb̃0/l2ds2l2−b−s1+b̃1dVb coss2kdd, ã1=sVa/l2dcosskd

and b̃1=Vb coss2kd / s2l2−bd. From these relations, we find

l2<Va cosskd+2g2b̃0, which implies

ã0
2 < 4b̃0

2 − sb̃0/g2dfb − 2Va cosskd + Vb coss2kdg,

ã1 <
Va cosskd

Va cosskd + 2g2b̃0

! 1, s20d

b̃1 <
Vb coss2kd

2Va cosskd + 4g2b̃0 − b
! 1.

From Eq.(18) and Eq.(20), it is easy to see that, in order

to obtain SLM, the nonlinear termg2b0sb̃0d should be much
larger than the linear coupling terms,Va cosskd and
Vb coss2kd.

From Eq.(15) we calculate the total power

Podd< a0
2 + 2b0

2 + Osa1
2,b1

2d, s21d

Peven< 2ã0
2 + 4b̃0

2 + Osã1
2,b̃1

2d, s22d

and the Hamiltonian of each mode,

Hodd< − 4a0
2a1Va cosskd − 4b0

2b1Vb coss2kd − bb0
2 − 2g2a0

2b0

+ Osa1
2,b1

2d, s23d

Heven< − 2ã0
2s1 + 2ã1dVa cosskd − 2g2ã0

2b̃0 − 4b̃0
2s1

+ 2b̃1dVb coss2kd − 2bb̃0
2 + Osã1

2,b̃1
2d. s24d

We follow the same reasoning as in the case of the cubic
nonlinear waveguide arrays and calculate the effective PN
barrier. Such calculations look simpler for the physically im-
portant case of vanishing mismatch,b<0. With that as-
sumption, and imposing that the power content of both, odd
and even modes, are equal,Podd=Peven, we obtain 3b0

2

<6b̃ 0
2+sb̃0/g2df2Va cosskd−Vb coss2kdg, and then

b̃0 <
b0

Î2
−

f2Va cosskd − Vb coss2kdg
12g2

. s25d

In terms ofb0, the Hamiltonian of both the modes can be
approximated as

Hodd< − 8g2b0
3 + Osa1

2,b1
2d, s26d

Heven< − 4Î2g2b0
3 − 8Vab0

2 cosskd − 4Vbb0
2 coss2kd

+ Osa1ã1,b1b̃1d. s27d

Finally, in this approximation, we calculate the PN barrier of
the strongly localized modes,

Ds2d = Hodd− Heven< − 8Cg2b0
3 + b0

2f4Va cosskd

+ Vb coss2kdg, s28d

whereC=s1−Î2/2d. This PN barrier for an array of nonlin-
ear quadratic waveguides(28) shows some interesting fea-
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tures: The main term in(28) is cubic in the mode amplitude,
while for the cubic case it is quartic[see Eq.(11)]. Also we
notice that the first correction to the PN barrier(28) is linear
in the couplings, and it depends on the square of the SLM
amplitude. This is exactly the same term as in the case of the
nonlinear cubic array. Thus, the first-order correction is more
important in the nonlinear quadratic array than that in the
nonlinear cubic array suggesting that the appropriate engi-
neering of the couplings and/or input kick to achieve digi-
tized switching should be easier to achieve.

For the numerical simulations, we use the initial input in
the form of an odd mode,

ans0d = a0a1
un−ncue−isn−ncdk,

s29d
bns0d = b0b1

un−ncue−2isn−ncdk,

for n−nc=0, ±1, andans0d=bns0d=0, otherwise. In Eq.(29)
we use a0<Î4b0

2−sb /g2db0, a1<Va/2g2b0 and b1

<Vb/ s4g2b0−bd. We consider an array of 41 waveguides
with the initial input centered at the middle,nc=20. For sim-
plicity, we also assume the case of complete phase matching,
i.e., b<0, and identical coupling for both the harmonic
fields,Va,n=Vb,n. Figure 6 shows an uncontrollable switching
for a homogeneous array(left-hand side) and a controlled
digitized switching of an engineered array(right-hand
side) of the discrete two-frequency sfundamental
+second harmonicd soliton, by varying the intensity of the
input fundamental mode for a fixed parameterk=−1. The
inset of Fig. 6(right-hand side) shows the coupling modula-
tion required to achieve this type of engineered soliton
switching, which is particularly simple and consists of only a
single change of about 5% in the value of the coupling pa-
rameter. Figure 7 demonstrates the switching of the discrete
mode, composed of the fundamental and second-harmonic
fields, to six, five, and four neighboring waveguides, as the
intensity of the input fundamental mode is increased. In this
respect, it is interesting to point out that in all cases of the
digital switching both the fundamental and second-harmonic

fields act as a strongly coupled state, and that no lagging
behind was observed in any of the modes with respect to the
other.

We have performed other simulations with the quadratic
nonlinear array including the casesVb=0 (decoupled second-
harmonic fields in the array) andVb=aVa (reduced coupling
of the second-harmonic fields) with a,1, etc. In all of those
cases, we have observed the digitized switching of the dis-
crete solitons by engineering the coupling in the array as
discussed above.

IV. CONCLUSIONS

We have suggested and demonstrated numerically a
simple but yet effective method for controlling nonlinear
switching of discrete solitons in arrays of weakly coupled
optical waveguides. We have demonstrated how to achieve
the digitized switching of discrete optical solitons in weakly
coupled arrays of cubic and quadratic nonlinear waveguides
described, in the framework of the tight-binding approxima-
tion, by discrete models such as the DNLS equation with a
steplike variation of the waveguide coupling parameter. Our
approach involves a weak steplike modulation of the cou-
pling strength (or, equivalently, distance between the
waveguides) in the arrays with the period larger than the
waveguide spacing. Such superlattice waveguide structure

FIG. 6. Digitized switching of a discrete soliton in a quadratic nonlinear waveguide array by varying the fundamental beam intensity, for
k=−1, b=0 andg2=1. Left: homogeneous array forVa=Vb=0.3. Right: engineered array for the coupling modulation shown in the inset.

FIG. 7. Switching to 6, 5, and 4 sites of a discrete quadratic
soliton (SLM) with a slight intensity variation of the fundamental
mode, with the coupling modulation shown in the inset of Fig. 6.

SWITCHING OF DISCRETE OPTICAL SOLITONS IN… PHYSICAL REVIEW E 70, 026602(2004)

026602-7



permits the modification of the trapping properties of the
array by fine-tuning the strength of the effective Peierls-
Nabarro(PN) potential. In particular, we have estimated the
PN potential analytically for the quadratic nonlinear array for
the first time, to our knowledge. We have demonstrated the
digitized switching of a narrow input beam for up to 11
waveguides, in the case of the cubic nonlinear array, and up
to 10 waveguides, in the case of quadratic nonlinear array.
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